3.3 p 124

(a)
$$x^2-1$$

(b) at $x = \frac{4+\sqrt{13}}{3}$

(c) $5x^4+3x^3+2x$

(d) $-1+2x-3x^2$

(e) $-1+2x-3x^2$

(f) $x = \frac{21+\sqrt{13}}{3}$

(g) $-\frac{5}{x^2}+\frac{2}{x^3}$

(h) $-\frac{5}{x^2}+\frac{2}{x^3}+\frac{2}{x^3}$

(h) $-\frac{5}{x^2}+\frac{2}{x^3}+\frac{2}{x^3}+\frac{2}{x^3}+\frac{2}{x^$

More 3.3 - Derivative Rules

$$\mathcal{E}_{x}$$
) f and g are differentiable at $x=0$.
 $f(z)=3$, $f'(z)=-4$, $g(z)=1$, $g'(z)=2$.

$$\begin{array}{ll}
\boxed{1} \frac{d}{dx}(fg) &= f \cdot g' + g \cdot f' \\
&= 3 \cdot 2 + 1 \cdot - 4
\end{array}$$

TRY:
$$= 6 + -4 = 2$$

$$(2) \frac{1}{4x} (\frac{f}{9}) = \frac{g \cdot f' - f \cdot g'}{9^2} = \frac{1 \cdot -4 - 3 \cdot 2}{1} = -10$$

Expanding at 15 trees/year

The yield for each tree is increasing at 1.2 bushels tree each year.

Current rate of change of production for total crop?

$$T(x) = (bushels per tree)(\# of trees)
T(x) = b(x) \cdot n(x)
= b(x) \cdot n'(x) + n(x) \cdot b'(x)
= |5 \cdot |5 + 200 \cdot |.2
= 225 + 240
= 465 bushels per year$$

3.4-Velocity and other rates of change

Notation
$$y'' = \frac{dy}{dx}$$

$$y''' = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$

$$y'''' = \frac{d}{dx} \left(\frac{d^2y}{dx^2} \right) = \frac{d^3y}{dx^3}$$

Motion Along a Line

Position: S = f(t)

Displacement of a particle: $\triangle S$ from t to $t+\Delta t = S(t+\Delta t) - S(t)$

Average velocity: $\Delta S = \frac{f(t+\Delta t) - f(t)}{\Delta t}$

Instantaneous velocity: $V(t) = \lim_{\Delta t \to 0} \frac{f(t+\Delta t) - f(t)}{\Delta t} = s'(t)$

Speed: always + HW: p124 # 23,25,38-41,46,47,51,52